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Abstract. The generally deformed oscillator (GDO) and its multiphoton realization as well
as the coherent and squeezed vacuum states are studied. We discuss, in particular, the GDO
depending on a complex parameterq (therefore we call itq-GDO) together with the finite-
dimensional cyclic representations. As a realistic physical system of a GDO the isospectral
oscillator system is studied and it is found that its coherent and squeezed vacuum states are
closely related to those of the oscillator. It is pointed out that starting from theq-GDO with
q root of unity one can define the Hermitian phase operators in quantum optics consistently
and algebraically. The new creation and annihilation operators of the Pegg–Barnett-type phase
operator theory are defined by using the cyclic representations and these operators degenerate
to those of the ordinary oscillator in the classical limitq → 1.

1. Introduction

Deformation of Lie algebras has been finding applications in various branches of physics.
The q-deformed Lie algebras, or the quantum algebras, play an important role in quantum
integrable models and the quantum inverse scattering method [1, 2]. The generally deformed
oscillator (GDO) first appeared in Heisenberg’s theory of nonlinear spinor dynamics [3]. In
the literature, many more deformed oscillators can be found [4–7] and a unification scheme
for them has been suggested (see [8] and references therein). Many physical systems are
found to enjoy the GDO symmetry (for a list see [8–10]). In this paper we shall pay attention
to several types of GDO, namely the multiphoton realization of a GDO and two new GDO
systems: the isospectral oscillator system (ISOS) [11, 12] andq-deformed GDO which
is a subalgebra of GDO. Based on theq-deformed GDO having finite-dimensionalcyclic
representations we construct the Hermitian phase operator in quantum optics algebraically.

In section 2 we first review the GDO and study its multiphoton realization and the
coherent and squeezed vacuum states. These states are expressed in terms of an exponential
displacement operator acting on the vacuum state. We know that the GDO can be realized
in terms of the usual single photon operator [8, 13] (multiphoton realization of some Lie
algebras and theq-oscillator can be found in [14] and [15–17], respectively, and the
single photon realization of theq-oscillator has been extensively studied [18]), and that
the exponential coherent states of the GDO are already obtained in a different way [13]. A
new notion of ‘spontaneously broken’ multiphoton realization ofq-oscillators is introduced
here.
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In section 3 we add a new member to the GDO family, the isospectral oscillator system
(ISOS) [11]. As suggested by the name, it has the same spectrum as the oscillator. It can be
formulated in the framework of supersymmetric quantum mechanics and the factorization
method [12]. Its coherent states are studied in [19]. We show that the creation and
annihilation operators and the Hamiltonian generate a GDO. We also study its coherent
and squeezed vacuum states and find that these states are closely related to the density-
dependent annihilation operator coherent states and to the squeezed vacuum of the oscillator,
respectively.

Section 4 is devoted to the connection between the Hermitian phase operator in quantum
optics and theq-GDO with cyclic representations. The proper quantization of the phase
angle of an oscillator was first considered by Dirac in 1927 [20]. For history and some
review papers of the phase operator, see [21]. However, because of the fact that the creation
and annihilation operators of the oscillator do not admit a naive polar decomposition, i.e.
a product of a unitary times a positive semi-definite Hermitian operator, the problem was
unsolved for a long time. Susskind and Glogower considered a weaker exponential phase
operator which is one-side unitary [22], namely only one of the two relationsUU † = 1
or U †U = 1 holds for the exponential phase operatorU = eiφ . Recently it was realized
that the Hermitian phase operator could be defined in an (S + 1)-dimensional Hilbert space
and that the expectation values of physical quantities would tend to those of the oscillator
in the limit S → ∞ [23, 24]. Pegg and Barnett considered atruncated oscillatordefined
in the (S + 1)-dimensional space and presented the Hermitian phase operator (PB phase
operator) [23]. The truncated oscillator has one disadvantage from the symmetry point
of view: its operators do not form a closed algebra. Moreover, the truncated oscillator
is not the only way to realize the PB phase operator. For example, Ellinas revealed the
relevance of the PB phase operator to the naiveq-oscillator [6] with q root of unity [25].
In his approach, however, the naiveq-oscillator provides only a finite-dimensional space
and the Hermiticity of the phase operator is not automatically ensured because of the use
of a regular representation(see section 4). In order to connect a GDO with the Hermitian
phase operator, we introduce a new GDO, which is a subalgebra of a GDO depending on
a complex parameterq (therefore we call it theq-GDO). It has finite-dimensional cyclic
representations whenq is a root of unity. Here we advance the problem in two points:
(1) the q-GDO with q root of unity is particularly suited foralgebraic realizationof the
PB phase operator theory; and (2) the cyclic representation of theq-GDO (and therefore
the ‘q-oscillator’) automatically ensures theHermiticity of the phase operator.

2. Generally deformed oscillator

In this section we first review the GDO, then the coherent and the squeezed vacuum states
of GDO are presented explicitly in terms of an ordinary exponential operator.

2.1. GDO and its multiphoton realization

The GDO is an associative algebraB over the complex number field C with generatorsA†,
A, N and the unit 1 satisfying

[N , A†] = A† [N , A] = −A AA† = F(N + 1) A†A = F(N ) (2.1)

where the Hermitian non-negative functionF is called thestructure function. It should
satisfy the condition

F(0) = 0 (2.2)
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in order to have the Fock representation.
The algebra (2.1) can be realized in terms of the usual single photon operator [8, 13]

(multiphoton realization of some Lie algebras and theq-oscillator can be found in [14]
and [15–17], respectively, and the single photon realization of theq-oscillator has been
extensively studied [18]). Here we would like to present the general multiphoton realization
of the GDO. For this purpose, we consider the multiphoton lowering operator

A = f (N)am (2.3)

where a and a† are the annihilation and creation operators of the photon satisfying
[a, a†] = 1,N = a†a, andm is a positive integer. As usual the Fock states of the oscillatora

anda† are denoted by|n〉, n = 0, 1, . . .; a|0〉 = 0, a|n〉 = √
n|n−1〉, a†|n〉 = √

n+ 1|n+1〉.
The functionf (N) specifies the intensity-dependent coupling, which is in general complex,
and we assume thatf (x) does not have zeros at non-negative integer values ofx. By using
aa† = N + 1, a2(a†)2 = (N + 1)(N + 2), etc, we obtain

AA† = (N + 1)(N + 2) · · · (N +m)f (N)f ∗(N) (2.4)

A†A = (N −m+ 1)(N −m+ 2) · · ·Nf (N −m)f ∗(N −m). (2.5)

It is obvious that we only need to restrict our discussion to the sectorSi (i = 0, 1, . . . , m−1)
spanned by the Fock states|nm+ i〉 (n non-negative integers). Introducing themultiphoton
number operatorNi ≡ N (i = 0, 1, . . . , m− 1) on the sectorSi

N = 1

m
(N − i) i = 0, 1, . . . , m− 1 (2.6)

andF(N + 1) ≡ (mN + 1 + i) · · · (mN + m + i)f (mN + i)f ∗(mN + i), we can recast
the system (2.4), (2.5) in the following form,

AA† = F(N + 1) A†A = F(N ) [N , A†] = A† [N , A] = −A (2.7)

which we callintensity-dependentm-photon realizationof B. Note that the right-hand side
of (2.5) vanishes on the Fock states|n〉 for 0 6 n 6 m − 1, which impliesF(0) = 0 in
each sector.

It is very tempting to apply the idea of the system (2.7) to the multiphoton (m-photon)
realization of theq-deformed oscillator. Let us choose (hereq is a real deformation
parameter)

f (N) ≡
{

1

(N + 1) · · · (N +m)

[
N

m
+ 1

]} 1
2

(2.8)

where [x] ≡ (qx − q−x)/(q − q−1), and define

bq ≡ A = f (N)am b†
q ≡ A† = (a†)mf ∗(N) Nq ≡ N + i

m
. (2.9)

Then by using (2.4) and (2.5) we would obtainformally the following relations:

bqb
†
q = [Nq + 1] [Nq, b

†
q ] = b†

q [Nq, bq ] = −bq. (2.10)

b†
qbq = (N −m+ 1)(N −m+ 2) · · ·N

(N −m+ 1)(N −m+ 2) · · ·N [Nq ] = [Nq ]. (2.11)

Equations (2.10) and (2.11) are in fact a multiphoton realization of theq-oscillator,

bqb
†
q − qb†

qbq = q−Nq . (2.12)

It should be remarked that the eigenvalues ofNq are not integers except for thei = 0
sector.
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By close inspection, however, one finds that the relation (2.11) is not true in the ‘vacuum’
of each sectorSi (i > 1 andm > 1) (for them = 1 case see [18], theS0 sector is discussed
in [15]). Obviously the ‘vacuum’ of theith sector‖0〉 = |i〉 vanishes when applied bybq ,

bq‖0〉 = f (N)am|i〉 = 0 i = 0, 1, . . . , m− 1. (2.13)

On the other hand, as remarked above, [Nq ]‖0〉 = [i/m]‖0〉 is non-vanishingfor i > 1.
This apparent inconsistency is caused by 0/0 = 1 in (2.11), sinceN − i in the numerator
and denominator vanish on‖0〉 = |i〉. To sum up, the relations (2.11) and (2.12) are broken
only by the ‘vacuum’ expectation value and all the other relations are correct. It would
be very interesting if one could find physical applications of the ‘spontaneously broken’
multiphoton realization of theq-oscillator.

If we introduce the intensity andsector-dependentmultiphoton coupling then we can
obtain theq-oscillator in each sector. Namely, if we define

aq =
√

[N + 1]

(N + 1) · · · (N +m)
am

in each sector, then it is easy to see thataqa
†
q = [N + 1] anda†

qaq = [N ] are satisfied as
operator equations. This result has been reported in [16] but they considered this realization
only in the sectorS0.

2.2. Coherent and squeezed vacuum states

In this subsection we shall study the ladder-operator coherent and squeezed vacuum states
of the GDO. To this end we define a convenient orthonormal basis forSi ,

‖n〉 = 1√
[[F(n)]]!

(A†)n‖0〉 (2.14)

where‖0〉 = |i〉 is the vacuum state of the sectorSi satisfyingA‖0〉 = N‖0〉 = 0 and
[[F(n)]]! ≡ F(n)F (n− 1) · · ·F(1), [[F(0)]]! ≡ 1. On this basis we have

A†‖n〉 =
√
F(n+ 1)‖n+ 1〉 A‖n〉 =

√
F(n)‖n− 1〉 N‖n〉 = n‖n〉. (2.15)

2.2.1. Squeezed vacuum and squeeze operator.We first consider the squeezed vacuum|v〉
annihilated byµA+ νA†

(µA+ νA†)|v〉 = 0 (2.16)

where the complex numbersµ andν satisfy |ν/µ| < 1. Let us express it in the form of an
exponential displacement operator (squeeze operator) acting on the vacuum state. Expand
|v〉 = ∑∞

n=0Cn‖n〉 and insert it into (2.16), yielding

C2k+1 = 0 C2k = C0z
k

√
[[F(2k − 1)]]!!

[[F(2k)]]!!
(2.17)

wherez = −ν/µ, [[F(2k)]]!! = F(2k)F (2k−2) · · ·F(2), [[F(2k−1)]]!! = F(2k−1)F (2k−
3) · · ·F(1) and [[F(0)]]!! = [[F(−1)]]!! ≡ 1. Then we have

|v〉 = C0

∞∑
k=0

zk

√
[[F(2k − 1)]]!!

[[F(2k)]]!!
‖2k〉 = C0

∞∑
k=0

zk
(A†2)k

[[F(2k)]]!!
‖0〉. (2.18)
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It is easy to check that the above infinite series converges if|z| < 1 under mild assumptions
on the asymptotic behavior off (x), for examplef (x) ' xα for x → ∞. Now, as a key
step, we use the following identity,( N

F(N )
A†2

)k
= (A†2)k

N + 2

F(N + 2)
· · · N + 2k

F (N + 2k)
(2.19)

which, on the vacuum state‖0〉, becomes( N
F(N )

A†2

)k
‖0〉 = (A†2)k

[[(2k)]]!!

[[F(2k)]]!!
‖0〉 = (A†2)k

2kk!

[[F(2k)]]!!
‖0〉. (2.20)

Then we can rewrite (2.18) as

|v〉 = C0

∞∑
k=0

1

k!

( z
2
A†2

)k (N + 2) · · · (N + 2k)

F (N + 2) · · ·F(N + 2k)
‖0〉 = C0 exp

(
zN

2F(N )
A†2

)
‖0〉. (2.21)

Following the terminology of the oscillator, the operator

S(z) = C0 exp

(
zN

2F(N )
A†2

)
(2.22)

is referred to as thegeneralizedsqueeze operator.

2.2.2. Multiphoton coherent states.The multiphoton coherent states are the eigenstates of
the annihilation operatorA,

A|α〉 = α|α〉 (2.23)

whereα is an arbitrary complex number. Expanding|α〉 = ∑∞
n=0Dn‖n〉 and inserting it

into (2.23), we haveDn = D0α
n/

√
[[F(n)]]! and the coherent state|α〉 is obtained as

|α〉 = D0

∞∑
n=0

αn

[[F(n)]]!
(A†)n‖0〉. (2.24)

Using the following identity,( N
F(N )

A†
)n

= (A†)n
N + 1

F(N + 1)
· · · N + n

F(N + n)
(2.25)

we obtain the coherent state in the ordinary exponential form

|α〉 = C0

∞∑
n=0

αn

n!

( N
F(N )

A†
)n

‖0〉 = C0 exp

(
αN
F(N )

A†
)

‖0〉 = C0D(α)‖0〉. (2.26)

We remark that the coherent states of the GDO have already been studied extensively. In
particular, Shantaet al have obtained the result (2.26) [13] using a different method (for the
q-oscillator case see [29]). They first looked for an operatorG† such that [A,G†] = 1 and
then wrote the displacement operator asD(α) = exp(αG†). In fact, by direct verification,
we have [

A,
N

F(N )
A†

]
= 1.

Our method uses the identity (2.19) and (2.25), by which we can easily obtain not only the
coherent states but also the squeezed vacuum states. Furthermore, we shall find that this
method will play an important role in revealing the relevance of the coherent and squeezed
vacuum states of ISOS to those of the oscillator (see section 3.2).
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In some works the so-called deformed exponential displacement operator expF (αA
†) ≡∑∞

n=0 α
n(A†)n/[[F(n)]]! is used to express the coherent state expF (αA

†)‖0〉. We note that
two displacement operators, expF (αA

†) and exp((αN /F (N ))A†), are essentially different,
although they give rise to the same coherent states by acting on the vacuum state.

From the above discussion we see that theq-oscillator also admits the multicomponent
squeezed and coherent states through its multiphoton realization (2.9) but the relationship
is broken by the ‘vacuum’ expectation value except for inS0.

3. GDO and isospectral oscillator system

3.1. Isospectral oscillator system as a GDO

In this section we shall first review some basic facts of the isospectral oscillator system
(ISOS) and then show that its creation and annihilation operators and the Hamiltonian
generate a GDO. The ISOS, as suggested by the name, is a system having the same spectrum
as the ordinary oscillator. The Hamiltonian of the oscillator isH = a†a + 1

2 = N + 1
2.

Then the ISOS Hamiltonian is

Hλ = b†b + 1
2 = Nλ + 1

2 (3.1)

whereb and its conjugateb† are defined by

bb† = aa† (3.2)

andNλ = b†b. For the realization of the operatorsb† andb in the coordinate representation,
see [11, 12]. In fact,λ is just a parameter entering the coordinate representation ofb† and
b. From the relation

Hλb
† = b†(H + 1) (3.3)

it follows that the states (|n− 1〉 are the eigenstates ofH )

|ψn〉 = 1√
n
b†|n− 1〉 n = 1, 2, . . . (3.4)

are the normalized orthogonal eigenstates ofHλ with eigenvaluesEn = n+ 1
2. These states,

together with the state|ψ0〉 which is defined byb|ψ0〉 = 0 and is an eigenstate ofHλ with
eigenvalue1

2, are complete. The operatorsb† andb transform the eigenstates ofHλ to those
of H andvice versa:

b†|n〉 = √
n+ 1|ψn+1〉 b|ψn〉 = √

n|n− 1〉. (3.5)

The creation and annihilation operators of the ISOS are found to be [11, 12]

A = b†ab A† = b†a†b. (3.6)

The operatorsA andA† do not give a closed (Lie) algebra as argued in [19]. Here we are
interested in the associative algebra generated byA†, A andNλ (or Hλ). From the above
relations, it is not difficult to derive

[Nλ,A
†] = A† [Nλ,A] = −A A†A = (Nλ − 1)2Nλ AA† = N2

λ (Nλ + 1)
(3.7)

which is just a GDO with the structure function

F(x) = (x − 1)2x. (3.8)

We denote this algebra byBλ. It is easy to prove that the algebraBλ has two orthogonal
vacuum states|ψ0〉 and |ψ1〉 defined byA|ψ0〉 = A|ψ1〉 = 0, which correspond to the
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two zeros ofF(x). The one-dimensional subspace{|ψ0〉} is invariant and it forms a one-
dimensional representation ofBλ:

A|ψ0〉 = A†|ψ0〉 = Nλ|ψ0〉 = 0 Hλ|ψ0〉 = 1
2|ψ0〉. (3.9)

The subspace spanned by{|ψn〉|n = 1, 2, . . .} is also an invariant space on which the
representation can be easily obtained as

A|ψn〉 = (n− 1)
√
n|ψn−1〉 A†|ψn〉 = n

√
n+ 1|ψn+1〉 Hλ|ψn〉 = (n+ 1

2)|ψn〉.
(3.10)

The representation (3.10) is an infinite-dimensional irreducible representation. Therefore
the whole Hilbert space is decomposed into a direct sum of two irreducible subspaces.

3.2. Coherent state and squeezed vacuum of ISOS

We now turn to the coherent and the squeezed vacuum states of the ISOS, with special
emphasis on their relationship with those of the oscillator. The coherent states of ISOS as
the eigenstates ofA with the eigenvalueα have already been obtained as [19]

|α〉 = 1√
0F2(1, 2; |α|2)

∞∑
n=0

αn

n!
√
(n+ 1)!

|ψn+1〉 (3.11)

where0F2(1, 2; |α|2) is a generalized hypergeometric function defined by [31]

0F2(x, y; z) =
∞∑
n=0

0(x)0(y)

0(x + n)0(y + n)

zn

n!
. (3.12)

We now discuss its relationship with some states of the oscillator, using theidentity
techniques presented in section 2.3. In fact, equation (3.11) can be rewritten as

|α〉 = b† 1√
0F2(1, 2, |α|2)

∞∑
n=0

αn

n!(n+ 1)
√
n!

|n〉

= b† 1√
0F2(1, 2; |α|2)

∞∑
n=0

αn

n!(n+ 1)!
(a†)n|0〉

= b† 1√
0F2(1, 2; |α|2)

exp

(
α

N + 1
a†

)
|0〉. (3.13)

It is easy to see that[
(N + 2)a,

1

N + 1
a†

]
= 1 (3.14)

therefore, the (unnormalized) state

1√
0F2(1, 2; |α|2)

exp

(
α

N + 1
a†

)
|0〉 (3.15)

is the eigenstate of the operator(N + 2)a, a density-dependent annihilation operator of the
oscillator. Therefore the coherent state can be obtained by applying the operatorb† to the
eigenstate of the operator(N + 2)a.

On the other hand, what is the state obtained by applying the operatorb to |α〉? We in
fact have

b|α〉 = 1√
0F2(1, 2; |α|2)

∞∑
n=0

αn

n!n!
(a†)n|0〉 = 1√

0F2(1, 2; |α|2)
exp

( α
N
a†

)
|0〉 (3.16)
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which is the eigenstate of the density-dependent annihilation operator(N + 1)a of the
oscillator. So the coherent states of the ISOS are connected with the eigenstates of
the density-dependent annihilation operators(N + 2)a and (N + 1)a, in terms of the
transformationsb† andb.

Then we consider the squeezed vacuum defined by

(µA+ νA†)|v〉 = 0 (3.17)

where the complex numbersµ and ν satisfy |ν/µ| < 1. Taking |v〉 = ∑∞
n=0Cn|ψn〉, and

inserting it into equation (3.17), we obtain

C2k = 0 C2k+1 = zk
(

(2k − 1)!!

(2k)!!(2k + 1)

)1
2

C1 z ≡ − ν

µ
. (3.18)

Then we have

|v〉 = C1

∞∑
k=0

zk
(

(2k − 1)!!

(2k)!!(2k + 1)

)1
2

|ψ2k+1〉 = b†C1

∞∑
k=0

zk

(2k + 1)k!

(
a†2

2

)k
|0〉. (3.19)

The state

C1

∞∑
k=0

1

2k + 1

zk

k!

(
a†2

2

)k
|0〉 (3.20)

cannot be written in the form of an exponential operator acting on the vacuum state|0〉.
However, this state can be transformed to an exponential state by the action ofb. It is easy
to see that

b|v〉 = C1

∞∑
k=0

1

k!

(
z
a†2

2

)k
|0〉. (3.21)

After normalization this state is nothing but the squeezed vacuum of the oscillator

b|v〉 = S(z)|ψ0〉 ≡ exp

(
z
a†2

2
− z∗ a

2

2

)
|0〉. (3.22)

Therefore the squeezed vacuum of ISOS is closely related to that of the oscillator through
the transformationb.

4. q-GDO and PB phase operator

The purpose of this section is twofold: (1) we construct thenew creation and annihilation
operators related to the PB phase operator theory which form a closed associative algebra
(someq-deformed GDO) and degenerate to those of the ordinary oscillator in a certain
limit; (2) we present a formalism to define algebraically the Hermitian phase operator from
the viewpoint of the cyclic representations of someq-GDO.

4.1. q-GDO and its cyclic representation

The GDOB , in general, does not admit thecyclic representation. To connect the GDO with
the Hermitian phase operator, we have to look for the GDO which hasfinite-dimensional
cyclic representations in the same sense as in theq-oscillator [26].

Define the algebraBq as an associative algebra with generatorsA†, A, qN and 1 subject
to the relations

qNA = q−1AqN qNA† = qA†qN AA† = F(qN+1) A†A = F(qN ) (4.1)
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where the Hermitian non-negative functionF is again called the structure function.
This algebra can obviously be viewed as a subalgebra of the algebraB by identifying
F(qN ) ≡ F(N ).

The algebraBq admits the Fock-like representation for anyq if the conditionF(1) = 0
⇔ F(0) = 0 is satisfied. However, whenq is the(S + 1)th root of unity, some other types
of representations are possible. Here we are interested in the cyclic representations, for
which the conditionF(1) = 0 is not imposed. We first prove that,if q is the(S + 1)th root
of unity, the elementsAS+1, (A†)S+1 and(qN )S+1 are all the central elements of the algebra
Bq . This can be shown from (4.1) and the following relations,

[AS+1, A†] = AS(F(qN+1)− F(qN−S)) = 0
[A, (A†)S+1] = (F(qN+1)− F(qN−S))(A†)S = 0 (4.2)

sinceqN+1 = qN−S+(S+1) = qN−S .
Now let us construct the explicit cyclic representation of theq-GDO whenqS+1 = 1.

Let HS be a vector space with an orthonormal basis

HS+1 : {|k〉|k = 0, 1, 2, . . . , S}. (4.3)

Define the action ofBq on HS as

A|k〉 =
√

F(qk+η)|k − 1〉 k 6= 0 A|0〉 = ξ−1
√

F(qη)|S〉 ξ 6= 0

A†|k〉 =
√

F(qk+η+1)|k + 1〉 k 6= S A†|S〉 = ξ
√

F(qη)|0〉
qN |k〉 = qk+η|k〉 (4.4)

whereη is an extra real parameter (which may depend onS) [27] andξ 6= 0 is a complex
constant. One can directly verify that equations (4.4) define an (S + 1)-dimensional cyclic
representation ofBq if

F(qη+k) 6= 0 for k = 0, 1, . . . , S. (4.5)

In this representation the central elements take

(qN )S+1 = qη(S+1) (A†)S+1 = ξ
√

F(qη)F(qη+1) · · ·F(qη+S)
AS+1 = ξ−1

√
F(qη)F(qη+1) · · ·F(qη+S) (4.6)

which are non-vanishing constants.
It should be remarked that the naiveq-oscillator withqS+1 = 1, namely

F(qN ) = [N ] = (qN − q−N )/(q − q−1) (4.7)

fails to provide a cyclic representation simply becauseF(qN ) takes negative as well as
positive values. Some admissible choices are

F(qN ) = |[N ]| = |(qN − q−N )/(q − q−1)| (4.8)

F(qN ) = |(qN − q−N )/(q − q−1)+K(S)| (4.9)

whereK(S) is real. Let us call them positive ‘q-oscillators’. For case (4.8), the condition
|[k + η]| 6= 0 is satisfied ifη is not an integer. Then (4.4) defines a cyclic representation.
For case (4.9) we can also chooseη andK(S) to have cyclic representations by satisfying
(4.5). For example,

0< |K(S)| < 1
2 and η ≡ 0. (4.10)

We will return to these examples in connection with the Hermitian phase operator.
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Another well known type ofq-deformed oscillator (q complex)

F(qN ) = 1 − qN

1 − q
(4.11)

or, equivalently,

AA† − qA†A = 1 (4.12)

is not admissible as aq-GDO. It is obvious that theHermiticity condition of F is not
satisfied.

Another example of theq-GDO is the dynamical symmetry algebra of the Hamiltonian
system with self-similar potentials [28]. In this system the symmetry algebra is (q: real)

LB† = q2B†L LB = q−2BL B†B =
M∏
n=0

(L+ ωn) BB† =
M∏
n=0

(q2L+ ωn)

(4.13)

whereL is the Hamiltonian,ωn are some real and positive constants andM is a positive
integer. It can be rewritten in the form (4.1) by identification

L −→ (qN )2 B† −→ A† B −→ A. (4.14)

Next we shall prove that theq-GDO can also be realized in terms of the PB phase
operators in quantum optics and, on the other hand, it can be used to define the Hermitian
phase operator.

4.2. Creation and annihilation operators of PB phase operator theory

Let us begin with the PB theory of the Hermitian phase operator. The PB phase
operator is defined in an(S + 1)-dimensional spaceHS spanned by thenumber basis
|n〉, n = 0, 1, . . . , S, with the inner product〈m|n〉 = δmn. Define the phase states
|θm〉, m = 0, 1, . . . , S,

|θm〉 = 1√
S + 1

S∑
n=0

exp(inθm)|n〉 (4.15)

whereθm = θ0 + 2πm/(S + 1) andθ0 are real constants. Hereafter we write exp(inθm) as

exp(inθm) = exp(inθ0)q
mn (4.16)

whereq is the deformation parameter

q = exp

(
2π

S + 1
i

)
(4.17)

satisfyingqS+1 = 1. From the orthonormality of the number states〈m|n〉 = δmn, it is easy
to prove that of the phase states〈θm|θn〉 = δmn. We can express the number states in terms
of the phase states

|n〉 = 1√
S + 1

S∑
m=0

exp(−inθm)|θm〉. (4.18)

The PB phase operatoris defined as

8̂θ =
S∑

m=0

θm|θm〉〈θm| 8̂θ |θm〉 = θm|θm〉. (4.19)
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A representation of the exponential PB phase operator ei8̂θ on |n〉 is obtained as

ei8̂θ |n〉 = |n− 1〉 n 6= 0

ei8̂θ |0〉 = exp{i(S + 1)θ0}|S〉
e−i8̂θ |n〉 = |n+ 1〉 n 6= S

e−i8̂θ |S〉 = exp{−i(S + 1)θ0}|0〉. (4.20)

At this stage, Pegg and Barnett defined the creation and the annihilation operators

a
†
PB =

√
N̂e−i8̂θ aPB = ei8̂θ

√
N̂ (4.21)

where

N̂ =
S∑
n=0

n|n〉〈n|. (4.22)

Thena†
PB andaPB satisfy the so-calledtruncated oscillatorcommutation relation

[aPB, a
†
PB] = 1 − (S + 1)|S〉〈S| (4.23)

which they claim to degenerate to that of the ordinary oscillator

〈p|[aPB, a
†
PB]|p〉S→∞ = 1 (4.24)

on the ‘physical states’|p〉 (for example, on the coherent states of the single mode
electromagnetic field) in the limitS → ∞. We note that the truncated oscillator does
not form a closed algebra and that the operator relations do not simply reduce to those of
the ordinary oscillator in the limitS → ∞.

Here we shall define new creation and annihilation operators, which form aclosed
algebra (someq-GDO introduced in section 4.1) and degenerate to the usual oscillator in
the limit S → ∞. For this purpose, let us define

A† =
√

F(qN ) e−i8̂θ A = ei8̂θ
√

F(qN ) qN = qN̂+η = ei(2πη/(S+1))e(i2π/(S+1))N̂

(4.25)

where the operator e(i2π/(S+1))N̂ is nothing but thephase shift operator

ei(2π/(S+1))N̂ |θm〉 =
∣∣∣∣θm + 2π

S + 1

〉
≡ |θm+1〉 (4.26)

and the parameterη and the functionF will be specified later. It is easy to see that
equations (4.25) lead to the following relations,

A†|n〉 =
√

F(qn+η+1) |n+ 1〉 n 6= S

A†|S〉 = exp{−i(S + 1)θ0}
√

F(qη)|0〉
A|n〉 =

√
F(qn+η)|n− 1〉 n 6= 0

A|0〉 =
√

F(qη) exp{i(S + 1)θ0}|S〉
qN |n〉 = qn+η|n〉 (4.27)

which are just the representation (4.4) of theq-GDO with ξ = exp{−i(S + 1)θ0}. Therefore
the operators defined in (4.25) generate aq-GDO.

Now we consider the constraints on the parameterη or K(S) in the functionF . The
following conditions should be satisfied:
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(i) The functionF must be Hermitian and non-negative due to the same properties of
the operatorA†A.

(ii) η should be chosen such that the representation (4.27) is a cyclic representation.
(iii) In the classical limitS → ∞ (q → 1) or zero deformation, the operatorsA†, A

should tend to the creation and annihilation operators of the ordinary oscillator.
The condition for the cyclic representation is equivalent to the condition that the operator

F(qN ) has the inverse which is necessary in order to define the PB phase operator. For
simplicity and concreteness, let us discuss the positive ‘q-oscillators’ (4.8) and (4.9). As
mentioned above, the condition for non-vanishing central elements (4.5) can be easily
satisfied for case (4.8) ifη(S) is not an integer. As for the other example (4.9), the
same condition is satisfied for example by

η ≡ 0 0< |K(S)| < 1
2. (4.28)

In either case, the algebra ofA andA† degenerate to that of the ordinary oscillator (Weyl
algebra) provided

lim
S→∞

η(S) = 0 or lim
S→∞

K(S) = 0. (4.29)

These can be achieved; for example,η(S) = K(S) = 1/(S + 1).
We would like to remark that Ellinas [25] studied the phase operator from theregular

representation of the naiveq-oscillator with qS+1 = 1. As remarked in the previous
subsection, the naiveq-oscillator (4.7) withq root of unity does not possess an admissible
algebraic structure to connect with the Hermitian phase operator. Moreover, in the regular
representation characterized by the conditionA|0〉 = A†|S〉 = 0, both of the operatorsA
andA† have a zero mode. Therefore, the polar decomposition for them does not exist and
the Hermiticity of the phase operator, if any, is not guaranteed.

4.3. Algebraic definition of the Hermitian phase operator

Now we turn to the study of the Hermitian phase operator from the viewpoint of the cyclic
representations of theq-GDO. For concreteness, we consider the positive ‘q-oscillator’ (4.8)
only. For other choices ofF such as (4.9) the discussion is essentially the same. We start
with the cyclic representation (4.4) of a positive ‘q-oscillator’ on the spaceHS with the
inner product〈m|n〉 = δmn. Define the exponential phase operators ei8̂θ and e−i8̂θ by the
relation (4.25). Since we have chosenη such that

√|[η + k]| 6= 0 (k ∈ {0, 1, . . . , S}) in
the cyclic representation (4.25), the operator

√|[N ]| (4.4) has the inverse. Therefore in the
cyclic representation (4.4) the operators e±i8̂θ are well defined uniquely:

ei8̂θ = {|[N + 1]|}− 1
2A e−i8̂θ = {|[N ]|}− 1

2A†. (4.30)

Inserting (4.30) into (4.4), we find the action of e±i8̂θ on HS :

ei8̂θ |k〉 = |k − 1〉 k 6= 0 ei8̂θ |0〉 = ξ−1|S〉
e−i8̂θ |k〉 = |k + 1〉 k 6= S e−i8̂θ |S〉 = ξ |0〉
qN |k〉 = qk+η|k〉. (4.31)

Choosingξ = e−iθ0(S+1), we exactly reproduce the PB exponential phase operator (4.27).
It is not convenient to derive the action of phase operator8̂θ itself on the number

states. To evaluate the phase operator8̂θ itself, we have to look for a basis on which ei8̂θ

is diagonal. To this end we evaluate the eigenstates of ei8̂θ

ei8̂θ |z〉 = z|z〉. (4.32)
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Suppose that|z〉 = ∑S
n=0Cn|n〉, whereCn is a coefficient to be determined. Then inserting

it into equations (4.32) we obtainS + 1 distinct eigenvalues,

zm = exp(iθ0) exp

(
2πmi

S + 1

)
≡ exp(iθm) m = 0, 1, . . . , S (4.33)

whereθm is the same as in equation (4.16). Then the corresponding eigenstates are

|θm〉 ≡ |zm〉 = C0

S∑
n=0

exp(iθmn)|n〉 (4.34)

and their inner product

〈θm|θn〉 = |C0|2(S + 1)δmn. (4.35)

Requiring that the states|θm〉 are normalized, the constantC0 is fixed as 1/
√
S + 1. In

comparison with the PB theory, these eigenstates form the phase states. On the phase states
the eigenvalue equation (4.32) becomes

ei8̂θ |θm〉 = exp(iθm)|θm〉 (4.36)

from which we candefinethe Hermitian phase operator8̂θ as follows:

8̂θ |θm〉 = θm|θm〉. (4.37)

So, this approach exactly recovers the PB theory. It should be noted, however, that all the
eigenvalues could be shifted by an integer multiple of 2π , which is natural for a phase. In
other words it can be absorbed by the redefinition ofθ0.

5. Conclusion

In this paper we have studied the GDO and some of its properties, namely, the multiphoton
realizations, the ladder-operator coherent and squeezed vacuum states. The coherent
displacement operatorD(α) and the squeeze operatorS(z) are explicitly constructed and
expressed in the exponential form. For the ordinary oscillator, we know that the state
D(α)S(z)|0〉
|α, z〉 ≡ D(α)S(z)|0〉 = C0 eαa

†
eza

†2|0〉 normalization========= eαa
†−α∗a eza

†2−z∗a2|0〉 (5.1)

is just the squeezed state, which is also the eigenstate ofµa+νa†. However, for the general
case (the GDO), the stateD(α)S(z)‖0〉 is not the squeezed state equivalent to the ladder-
operator definition, namely, it is not the eigenstate ofµA+νA†. The coherent displacement
operatorD(α) is a good operator in the sense that it enjoys the following property:

D(−α)AD(α) = A+ α. (5.2)

However, the squeeze operatorS(z) does not keep the Bogoliubov transformation, namely,

S−1(z)AS(z) 6= µA+ νA†. (5.3)

This is why the stateD(α)S(z)|0〉 is not the eigenstate ofµA + νA†, as is argued in
[30]. However, we can expect that the statesD(α)S(z)‖0〉 andS(z)D(α)‖0〉 are important
quantum states in quantum optics and it is a good challenge to study their non-classical
properties.

We have pointed out that a realistic physical system, the ISOS (isospectral oscillator
system), has a GDO as its symmetry algebra. Its coherent and squeezed vacuum states
are studied in some detail and they are compared and related with those of the ordinary
oscillator.
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To connect the GDO with the Hermitian phase operator, we have introduced a new
algebra, theq-GDO, which is a subalgebra of the GDO depending on a complex parameter
q. It has cyclic representations whenq is a root of unity. This approach has two remarkable
advantages: (1) the phase operator of the Pegg–Barnett theory can be constructed from the
q-GDO purely algebraically; (2) theq-GDO with qS+1 = 1 provides a finite-dimensional
space to define the phase operator and the cyclic representations ensure the Hermiticity of
the phase operator in contrast with the regular representation case.
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Appendix A. Multimode GDO

The formalism in section 2.1 can be easily generalized to the multimode case. For
simplicity we consider only the two-mode case. Generalization to three-mode and further is
straightforward. Consider the two-mode photon field described by two independent modes

[a, a†] = 1 [b, b†] = 1 (A.1)

and an arbitrary two-mode multiphoton annihilation oscillator

A = f (N1, N2)a
mbn (A.2)

whereN1 = a†a,N2 = b†b, f is an arbitrary function withf (n1, n2) 6= 0 for n1, n2 non-
negative integers. Note thatf is not necessarily factorized asf (N1, N2) = f1(N1)f2(N2).
It is easy to see(i = 1, 2)

AA† = F(N1 + 1,N2 + 1) A†A = F(N1,N2)

[Ni , A
†] = A† [Ni , A] = −A (A.3)

where

N1 ≡ 1

m
(N1 − i) N2 ≡ 1

n
(N1 − j) (0 6 i 6 m− 1, 0 6 j 6 n− 1)

F (N1 + 1,N2 + 1) ≡ (N1 + 1) · · · (N1 +m)(N2 + 1) · · · (N2 + n)f (N1, N2)f
∗(N1, N2)

≡ (mN1 + i + 1) · · · (mN1 + i +m)(nN2 + j + 1) · · ·
×(nN2 + j + n)f (N1,N2)f

∗(N1,N2). (A.4)

This algebra is defined in a subspaceS̄ij of the sectorSij spanned by (k = 0, 1, 2, . . .)

‖k〉 ≡ 1√
F(k, k)!

(A†)k|i, j〉 ∝ |km+ i, kn+ j〉. (A.5)

The representation on̄Sij is

A†‖k〉 =
√
F(k, k)‖k + 1〉 A‖k〉 =

√
F(k, k)‖k − 1〉 N1‖k〉 = N2‖k〉 = k‖k〉.

(A.6)

We consider the eigenvalue equation

(µA+ νA†)|β〉 = β|β〉. (A.7)
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These states are degenerate. The degeneracy can be lifted by assuming that the(m + n)

photons are either created or annihilated together. This means we have the following
conservation law:

(N1 − N2)|β〉 = 0. (A.8)

In representation (A.6) the condition is fulfilled automatically.
Identifying F(k, k) here withF(k) in section 2, representation (A.6) takes the same

form as (2.15). So, formally, the squeezed states can be investigated in the same manner
as those in section 2.2.
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