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Abstract. The generally deformed oscillator (GDO) and its multiphoton realization as well

as the coherent and squeezed vacuum states are studied. We discuss, in particular, the GDO
depending on a complex parametgr(therefore we call ity-GDO) together with the finite-
dimensional cyclic representations. As a realistic physical system of a GDO the isospectral
oscillator system is studied and it is found that its coherent and squeezed vacuum states are
closely related to those of the oscillator. It is pointed out that starting fromy{8®0O with

g root of unity one can define the Hermitian phase operators in quantum optics consistently
and algebraically. The new creation and annihilation operators of the Pegg—Barnett-type phase
operator theory are defined by using the cyclic representations and these operators degenerate
to those of the ordinary oscillator in the classical limit> 1.

1. Introduction

Deformation of Lie algebras has been finding applications in various branches of physics.
The ¢-deformed Lie algebras, or the quantum algebras, play an important role in quantum
integrable models and the quantum inverse scattering method [1, 2]. The generally deformed
oscillator (GDO) first appeared in Heisenberg’s theory of nonlinear spinor dynamics [3]. In
the literature, many more deformed oscillators can be found [4-7] and a unification scheme
for them has been suggested (see [8] and references therein). Many physical systems are
found to enjoy the GDO symmetry (for a list see [8—10]). In this paper we shall pay attention
to several types of GDO, namely the multiphoton realization of a GDO and two new GDO
systems: the isospectral oscillator system (ISOS) [11, 12] gua@formed GDO which
is a subalgebra of GDO. Based on theleformed GDO having finite-dimensioneyclic
representations we construct the Hermitian phase operator in quantum optics algebraically.
In section 2 we first review the GDO and study its multiphoton realization and the
coherent and squeezed vacuum states. These states are expressed in terms of an exponential
displacement operator acting on the vacuum state. We know that the GDO can be realized
in terms of the usual single photon operator [8, 13] (multiphoton realization of some Lie
algebras and the-oscillator can be found in [14] and [15-17], respectively, and the
single photon realization of theg-oscillator has been extensively studied [18]), and that
the exponential coherent states of the GDO are already obtained in a different way [13]. A
new notion of ‘spontaneously broken’ multiphoton realizatiory adscillators is introduced
here.
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In section 3 we add a new member to the GDO family, the isospectral oscillator system
(ISOS) [11]. As suggested by the name, it has the same spectrum as the oscillator. It can be
formulated in the framework of supersymmetric quantum mechanics and the factorization
method [12]. Its coherent states are studied in [19]. We show that the creation and
annihilation operators and the Hamiltonian generate a GDO. We also study its coherent
and squeezed vacuum states and find that these states are closely related to the density-
dependent annihilation operator coherent states and to the squeezed vacuum of the oscillator,
respectively.

Section 4 is devoted to the connection between the Hermitian phase operator in quantum
optics and the;-GDO with cyclic representations. The proper quantization of the phase
angle of an oscillator was first considered by Dirac in 1927 [20]. For history and some
review papers of the phase operator, see [21]. However, because of the fact that the creation
and annihilation operators of the oscillator do not admit a naive polar decomposition, i.e.
a product of a unitary times a positive semi-definite Hermitian operator, the problem was
unsolved for a long time. Susskind and Glogower considered a weaker exponential phase
operator which is one-side unitary [22], namely only one of the two relatiotd = 1
or UTU = 1 holds for the exponential phase operatbr= €¢. Recently it was realized
that the Hermitian phase operator could be defined inSaq 1)-dimensional Hilbert space
and that the expectation values of physical quantities would tend to those of the oscillator
in the limit S — oo [23,24]. Pegg and Barnett consideredrancated oscillatordefined
in the (S 4+ 1)-dimensional space and presented the Hermitian phase operator (PB phase
operator) [23]. The truncated oscillator has one disadvantage from the symmetry point
of view: its operators do not form a closed algebra. Moreover, the truncated oscillator
is not the only way to realize the PB phase operator. For example, Ellinas revealed the
relevance of the PB phase operator to the naiascillator [6] with ¢ root of unity [25].

In his approach, however, the naigeoscillator provides only a finite-dimensional space
and the Hermiticity of the phase operator is not automatically ensured because of the use
of aregular representatior(see section 4). In order to connect a GDO with the Hermitian
phase operator, we introduce a new GDO, which is a subalgebra of a GDO depending on
a complex parametey (therefore we call it the;-GDO). It has finite-dimensional cyclic
representations wheq is a root of unity. Here we advance the problem in two points:

(1) the ¢g-GDO with g root of unity is particularly suited foalgebraic realizationof the

PB phase operator theory; and (2) the cyclic representation of4B®0O (and therefore

the ‘g-oscillator’) automatically ensures thi¢ermiticity of the phase operator.

2. Generally deformed oscillator

In this section we first review the GDO, then the coherent and the squeezed vacuum states
of GDO are presented explicitly in terms of an ordinary exponential operator.

2.1. GDO and its multiphoton realization

The GDO is an associative algelBaover the complex number field C with generatars
A, N and the unit 1 satisfying

[NV, AT = AT [V, Al = -4 AAT = FIN 4+ 1) ATA=FWN) (2.1)

where the Hermitian non-negative functidnis called thestructure function. It should
satisfy the condition

F(0) =0 (2.2)
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in order to have the Fock representation.

The algebra (2.1) can be realized in terms of the usual single photon operator [8, 13]
(multiphoton realization of some Lie algebras and thescillator can be found in [14]
and [15-17], respectively, and the single photon realization ofgtlmscillator has been
extensively studied [18]). Here we would like to present the general multiphoton realization
of the GDO. For this purpose, we consider the multiphoton lowering operator

A= f(N)a" (2.3)

where a and a' are the annihilation and creation operators of the photon satisfying
[a,a'] = 1, N = a'a, andm is a positive integer. As usual the Fock states of the osciltator
anda' are denoted byn), n =0, 1, ...; a|0) = 0,a|n) = /nln—1), a’|n) = V/n + 1|jn+1).

The functionf (N) specifies the intensity-dependent coupling, which is in general complex,
and we assume thgt(x) does not have zeros at non-negative integer values 8y using

aat = N + 1, a?@a")? = (N + 1)(N + 2), etc, we obtain

AAT=(N+1)(N +2)--- (N +m)f(N)f*(N) (2.4)
ATA=(N=m4+D(N-m+2)---Nf(N —m)f*(N —m). (2.5)
It is obvious that we only need to restrict our discussion to the séeier=0, 1, ..., m—1)

spanned by the Fock statgsn + i) (» non-negative integers). Introducing thrultiphoton
number operatot\; = N (i =0, 1, ..., m — 1) on the sectos;

NZE(N—i) i=01...,m-1 (2.6)
m
andFIW +1) = @mN +1+i0)---(mN +m +1i) f(mN +1i) f*(mN +1i), we can recast
the system (2.4), (2.5) in the following form,
AAT = FN + 1) ATA = F(V) [V, Af] = Af [V, Al =—A (2.7)

which we callintensity-dependent-photon realizationof 5. Note that the right-hand side
of (2.5) vanishes on the Fock states for 0 < n < m — 1, which impliesF(0) = 0 in
each sector.

It is very tempting to apply the idea of the system (2.7) to the multiphotoplfoton)
realization of theg-deformed oscillator. Let us choose (heyeis a real deformation

parameter)
1 N :
f(N)z{(N+1)---(N+m) [m”“ (28

where k] = (¢* — ¢ ) /(g — ¢~ 1), and define

by=A= f(N)a" b}

Al = @h™ (v N, =N+ é (2.9)

Then by using (2.4) and (2.5) we would obtdarmally the following relations:

bybl =[Ny + 1] [Ng.bi]1=0] [N,, b,] = —b,. (2.10)
i (N—m+1HN-m+2)---N _
byby = (N—m+1)(N—m+2)---N[N‘1]_[Nq]' (2.11)

Equations (2.10) and (2.11) are in fact a multiphoton realization of;tbscillator,
bybl — qblb, =g~ (2.12)

It should be remarked that the eigenvaluesNyf are not integers except for the= 0
sector.



4052 H-C Fu and R Sasaki

By close inspection, however, one finds that the relation (2.11) is not true in the ‘vacuunm’
of each sectos; (i > 1 andm > 1) (for them = 1 case see [18], th& sector is discussed
in [15]). Obviously the ‘vacuum’ of théth sector||0) = |i) vanishes when applied ky,,

b,l10) = f(N)a™|i) =0 i=01....,m—1 (2.13)

On the other hand, as remarked abow¥,][|0) = [i/m]||0) is non-vanishingfor i > 1.
This apparent inconsistency is caused B9 & 1 in (2.11), sinceN — i in the numerator
and denominator vanish di®) = |i). To sum up, the relations (2.11) and (2.12) are broken
only by the ‘vacuum’ expectation value and all the other relations are correct. It would
be very interesting if one could find physical applications of thpohtaneously brokén
multiphoton realization of theg-oscillator.

If we introduce the intensity andector-dependentnultiphoton coupling then we can
obtain theg-oscillator in each sector. Namely, if we define

_ NV +1] m
VWD N+m ©

in each sector, then it is easy to see m;tt; =[N +1] and alaq = [N] are satisfied as
operator equations. This result has been reported in [16] but they considered this realization
only in the sectorSp.

2.2. Coherent and squeezed vacuum states

In this subsection we shall study the ladder-operator coherent and squeezed vacuum states
of the GDO. To this end we define a convenient orthonormal basis;for

1
=~ AH"0 2.14
lIn) |[F(n)]“( )"110) (2.14)
where ||0) = |i) is the vacuum state of the sect8r satisfying A||0) = A||0) = 0 and
[FO]' = Fn)F(n—1)---F(), [FO)]! =1. On this basis we have

Alllny = VF(n + Dln + 1) Aln) = VF@n)n —1) Nlin) = n|n). (2.19)

2.2.1. Squeezed vacuum and squeeze operaWe first consider the squeezed vacuum
annihilated byuA + vAf

(LA +vAHv) =0 (2.16)

where the complex numbers andv satisfy|v/u| < 1. Let us express it in the form of an
exponential displacement operator (squeeze operator) acting on the vacuum state. Expand
lv) =Y, Cylin) and insert it into (2.16), yielding

I[F 2k — D]
Ca1=0 Cy = Coz* [[(F(Zk)]')'] (2.17)

wherez = —v/u, [FCH]" = FRKF(2k—2)---F(2),[F2k—D]" = Fk—1)F (2k—
3)---F@) and [FO]" =[F(-D]" = 1. Then we have

S [F(2k — D! S (AT2)k
=C kP22 22 12k = C kX 7 10). 2.18
|v) okZ:;Z N [F@oT 3 o;z [F ol 10) (2.18)
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It is easy to check that the above infinite series converges$ ¥ 1 under mild assumptions
on the asymptotic behavior of (x), for examplef(x) >~ x* for x — oo. Now, as a key
step, we use the following identity,

(/\/ Alz)k_(ATZ)k N+2  N+2%
FN) - FIN+2  FWN +2k)

which, on the vacuum stat0), becomes

(2.19)

N i o [20]! e 2!
(F(N)A ) 10) = (A% [F T 10) = (A )mllm (2.20)

Then we can rewrite (2.18) as
ke (N+2)--- (N +2
@ZH('@ a0 = Coexp

FN+2)..-FWN + 2k)

Following the terminology of the oscillator, the operator

2
TG ) (2.22)

is referred to as thgeneralizedsqueeze operator.

2F(N)A )||o ). (2.21)

S(z) = Co exp(

2.2.2. Multiphoton coherent statesThe multiphoton coherent states are the eigenstates of
the annihilation operatos,

Ala) = a|a) (2.23)

wherea is an arbitrary complex number. Expanditg = ) .-, D,|n) and inserting it
into (2.23), we haveD,, = Do" /+/[ F(n)]! and the coherent stater) is obtained as

o0 a
_ Tyn
w—mgwmmmwm (2.24)

Using the following identity,
A\ 1
( N A.) oy ML N4 (2.25)
F(N) FIN+1) FWN +n)
we obtain the coherent state in the ordinary exponential form

aN

—_AT) ||0) = Coexp| ——=AT) ||0) = CoD()||0). 2.26

OZ @wv)“ OD<W)N> oD(@)]|0) (2.26)
We remark that the coherent states of the GDO have already been studied extensively. In

particular, Shantet al have obtained the result (2.26) [13] using a different method (for the

g-oscillator case see [29]). They first looked for an operatosuch that A, G'] = 1 and

then wrote the displacement operator28x) = exp(aG'). In fact, by direct verification,

we have
N | —
[AFwﬁ}_l

Our method uses the identity (2.19) and (2.25), by which we can easily obtain not only the
coherent states but also the squeezed vacuum states. Furthermore, we shall find that this
method will play an important role in revealing the relevance of the coherent and squeezed
vacuum states of ISOS to those of the oscillator (see section 3.2).
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In some works the so-called deformed exponential displacement operajaeXp =
Y oo (AN /[ F(n)]! is used to express the coherent state g 1)(|0). We note that
two displacement operators, expeA’) and exg(aN/F(N))A'), are essentially different,
although they give rise to the same coherent states by acting on the vacuum state.

From the above discussion we see thatghescillator also admits the multicomponent
squeezed and coherent states through its multiphoton realization (2.9) but the relationship
is broken by the ‘vacuum’ expectation value except folSin

3. GDO and isospectral oscillator system

3.1. Isospectral oscillator system as a GDO

In this section we shall first review some basic facts of the isospectral oscillator system
(ISOS) and then show that its creation and annihilation operators and the Hamiltonian
generate a GDO. The ISOS, as suggested by the name, is a system having the same spectrum
as the ordinary oscillator. The Hamiltonian of the oscillatoHs= afa + 5 = N + 3.

Then the ISOS Hamiltonian is

Hy=blb+3=N,+3 (3.1)
whereb and its conjugaté’ are defined by
bb' = aal (3-2)

andN, = b'b. For the realization of the operatdr§ andb in the coordinate representation,
see [11,12]. In factp is just a parameter entering the coordinate representation afd
b. From the relation

Hb' =b'(H +1) (3.3)
it follows that the states|{ — 1) are the eigenstates &)
1
|¢n>=ﬁb*|n—1> n=12... (3.4)
are the normalized orthogonal eigenstate#/pfwith eigenvalues, = n+ % These states,
together with the statg/p) which is defined by |y) = 0 and is an eigenstate @&f; with

eigenvalue%, are complete. The operatdrSandb transform the eigenstates £ to those
of H andvice versa

blln) = v+ 1) blya) = vnln = 1). (3.5)
The creation and annihilation operators of the ISOS are found to be [11,12]
A=blab AT =bla'b. (3.6)

The operatorsA and A" do not give a closed (Lie) algebra as argued in [19]. Here we are
interested in the associative algebra generatedypydA and N, (or H,). From the above
relations, it is not difficult to derive

[N, AT] = AT [Ny, Al = —A ATA = (N, — 1N, AAT = NA(N;, + 1)
(3.7)

which is just a GDO with the structure function
F(x) = (x — 1)%x. (3.8)

We denote this algebra b, . It is easy to prove that the algebf has two orthogonal
vacuum statesyo) and |vy1) defined byA|yo) = A|y1) = 0, which correspond to the
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two zeros of F(x). The one-dimensional subspagy)} is invariant and it forms a one-
dimensional representation 6% :

Alyo) = A'lyo) = Nilho) = 0 H,|¥o) = 31¥0). (3.9)

The subspace spanned By,)in = 1,2,...} is also an invariant space on which the
representation can be easily obtained as

AlY) = (n — D/n|Y,-1) A1) = nv/n + 1y41) Hyl W) = (n + 3)|¥).
(3.10)

The representation (3.10) is an infinite-dimensional irreducible representation. Therefore
the whole Hilbert space is decomposed into a direct sum of two irreducible subspaces.

3.2. Coherent state and squeezed vacuum of ISOS

We now turn to the coherent and the squeezed vacuum states of the 1SOS, with special
emphasis on their relationship with those of the oscillator. The coherent states of ISOS as
the eigenstates of with the eigenvaluez have already been obtained as [19]

lor) = |%+1) (3.11)

\/on(l 2; |a|?) Z (Vl+ Vin+ D!

wheregF»(1, 2; |«|?) is a generalized hypergeometric function defined by [31]

i Frrey) 2"

- (3.12)
= F'x+mI(y+n)n!

of2(x, y;2) =
We now discuss its relationship with some states of the oscillator, usingdtrdity
techniques presented in section 2.3. In fact, equation (3.11) can be rewritten as
1 > o’

\/ona 510 2t D"

la) = b
\/0F2<1 2; [af? Z;) Hn + D

n
bt ! exp( i aT) |0) (3.13)
JoFa(1, 2; a]?) N+1 ' '

(a')"]0)

It is easy to see that
1
[(N + 2)a, N 1aT] =1 (3.14)

therefore, the (unnormalized) state

! exp( * af) 0) (3.15)
VoF2(1, 2; |a?) N+1
is the eigenstate of the operat@y + 2)a, a density-dependent annihilation operator of the
oscillator. Therefore the coherent state can be obtained by applying the opéréathe
eigenstate of the operatoN + 2)a.
On the other hand, what is the state obtained by applying the opéraboix)? We in
fact have

T)n _

1 o
_ a0
oFa(L, 2 of? Z”'”' oFo(L 2: [a ) exp(ya') 10

bla) = (3.16)
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which is the eigenstate of the density-dependent annihilation opetater 1)a of the
oscillator. So the coherent states of the ISOS are connected with the eigenstates of
the density-dependent annihilation operatods + 2)a and (N + 1)a, in terms of the
transformations' andb.

Then we consider the squeezed vacuum defined by

(wA +vAHv) =0 (3.17)
where the complex numbeys and v satisfy [v/u| < 1. Taking|v) = > 7, C,l¥,), and
inserting it into equation (3.17), we obtain

B o @D\ _ v
Cgk—o C2k+1—Z <(2k)”(2k~|—1)> Cl = M. (318)

Then we have

S @—Du N at2
_Clk;z <(2k)”(2k+1)) [Voki1) = bClZ(Zk—i-l)kl( ) |0). (3.19)

The state

1 z*(a'
12 2+ 1k <2> 9 (3.20)

cannot be written in the form of an exponential operator acting on the vacuum|Gtate
However, this state can be transformed to an exponential state by the actioft & easy
to see that

blv) = Clel ( “Tz) (3.21)

After normalization this state is nothing but the squeezed vacuum of the oscillator

2

Therefore the squeezed vacuum of ISOS is closely related to that of the oscillator through
the transformatior.

1‘2 612
blv) = S(2)|Yo) = eXp(z -z ) |0). (3.22)

4. q-GDO and PB phase operator

The purpose of this section is twofold: (1) we construct legv creation and annihilation
operators related to the PB phase operator theory which form a closed associative algebra
(someg-deformed GDO) and degenerate to those of the ordinary oscillator in a certain
limit; (2) we present a formalism to define algebraically the Hermitian phase operator from
the viewpoint of the cyclic representations of sojn&DO.

4.1. g-GDO and its cyclic representation

The GDOZB, in general, does not admit tlogclic representation. To connect the GDO with
the Hermitian phase operator, we have to look for the GDO whichfinde-dimensional
cyclic representations in the same sense as inythscillator [26].

Define the algebr#, as an associative algebra with generatbirsA, ¢ and 1 subject
to the relations

g"A=qAqgY VAT =qATgY  AAT = FEVHY ATA=F@") (4.2)
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where the Hermitian non-negative functigh is again called the structure function.
This algebra can obviously be viewed as a subalgebra of the algelna identifying
FgV) = FN).
The algebra3, admits the Fock-like representation for apyf the condition7 (1) =0
< F(0) = 0 is satisfied. However, whepis the (S + 1)th root of unity, some other types
of representations are possible. Here we are interested in the cyclic representations, for
which the conditionF(1) = 0 is not imposed. We first prove thét,q is the (S + 1)th root
of unity, the elementa s+, (A1)5+1 and (¢?)S+! are all the central elements of the algebra
B, . This can be shown from (4.1) and the following relations,

[AS+1, AT] — AS(f(qN+l) _ ‘/r:'(quS)) — 0
[A. (4D = F@" ™) — Fg ) ah’ = 0 (4.2)
sinceqV 1 = gN=SHSHD — NS

Now let us construct the explicit cyclic representation of §86DO whengs*! = 1.
Let Hs be a vector space with an orthonormal basis

Hgo1: {IK)k=0,1,2,..., S} (4.3)

Define the action oB3, on Hs as

Alk) = VF(gmlk — 1) k#0 Al0) = &7/ F(gMIS) §#0

ATlk) = VF (@ k + 1) k#S AT|S) = &/ F(gM]0)

gVIk) = ¢" k) (4.4)
wheren is an extra real parameter (which may dependSpfi27] andé # 0 is a complex

constant. One can directly verify that equations (4.4) defineSan {)-dimensional cyclic
representation oB, if

Flg"* #£0 for k=0,1,...,5. (4.5)
In this representation the central elements take

(@) =" AN = &/ F gD F (g - F(gTS)

AT = TN F (@ F (@Y - Fgns) (4.6)

which are non-vanishing constants.
It should be remarked that the naiyeoscillator withgS*! = 1, namely

F@ ) =NM=6"-¢"/Gg-qH 4.7)

fails to providea cyclic representation simply becaus&q”’) takes negative as well as
positive values. Some admissible choices are

F@) = 1INl = 1" —¢)/@q—qYI (4.8)
F@) =1 ¢ /g - a7+ K(©S)| (4.9)

where K (S) is real. Let us call them positive-oscillators’. For case (4.8), the condition
I[k + n]| # 0 is satisfied ify is not an integer. Then (4.4) defines a cyclic representation.
For case (4.9) we can also choos@and K (S) to have cyclic representations by satisfying
(4.5). For example,

0<|K(S) <3 and n=0. (4.10)

We will return to these examples in connection with the Hermitian phase operator.
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Another well known type of;-deformed oscillatorg complex)
1- qN

Fg) ="

(4.11)

or, equivalently,
AAT—gATA=1 (4.12)

is not admissible as g-GDO. It is obvious that thedermiticity condition of F is not
satisfied.

Another example of thg-GDO is the dynamical symmetry algebra of the Hamiltonian
system with self-similar potentials [28]. In this system the symmetry algebia iseél)

M M
LB' = ¢?B'L LB =q ?BL B'B =[]+ BB =[](4°L + o)
n=0 n=0
(4.13)

where L is the Hamiltonianw, are some real and positive constants afids a positive
integer. It can be rewritten in the form (4.1) by identification

L — (gV)? Bt — At B — A. (4.14)

Next we shall prove that the-GDO can also be realized in terms of the PB phase
operators in quantum optics and, on the other hand, it can be used to define the Hermitian
phase operator.

4.2. Creation and annihilation operators of PB phase operator theory

Let us begin with the PB theory of the Hermitian phase operator. The PB phase
operator is defined in adS + 1)-dimensional spac&{s spanned by thewumber basis
n),n = 0,1,...,8, with the inner product(m|n) = 3§,,. Define thephase states
6),m =0,1,...,8,

1 S
|9m> = eXp(inem)W) (415)
VS+1 ;
where6,, = 6o+ 2nm /(S + 1) and6, are real constants. Hereafter we write @xp,,) as
exp(ind,,) = exp(inbo)g™" (4.16)
wheregq is the deformation parameter
2
= ex i 4.17
0= exp( i) @17)

satisfyinggS*! = 1. From the orthonormality of the number stategn) = §,,,, it is easy
to prove that of the phase stat@s,|0,,) = 3,.,. We can express the number states in terms
of the phase states

n)

1 S
= eXP(—inb,)|6m). (4.18)
USTily

The PB phase operatois defined as

N
m=0
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A representation of the exponential PB phase operéforw |n) is obtained as
¥ n) = |n — 1) n+#0
&% 10) = exp(i(S + 1)6o}|S)
e ) = |n+ 1) n+#S

e %Sy = exp{—i(S + 1)6o}|0). (4.20)
At this stage, Pegg and Barnett defined the creation and the annihilation operators
a;,B = \/ﬁe_i&"’ app = eiﬁ)f’\/ﬁ (421)
where
. S
N =Y "nln)nl. (4.22)
n=0

Then aE,B andapg satisfy the so-callettuncated oscillatorcommutation relation

[apB, ai,B] =1—-(S+ D|S)(S] (4.23)
which they claim to degenerate to that of the ordinary oscillator
(pllaps. abglIp)s—oo =1 (4.24)

on the ‘physical states]p) (for example, on the coherent states of the single mode
electromagnetic field) in the limi§ — oco. We note that the truncated oscillator does
not form a closed algebra and that the operator relations do not simply reduce to those of
the ordinary oscillator in the limi§ — oo.

Here we shall define new creation and annihilation operators, which fooiosed
algebra (someg-GDO introduced in section 4.1) and degenerate to the usual oscillator in
the limit § — oo. For this purpose, let us define

Al = [F(g) e—iéa A= ei‘ia [F(gN) qN — qﬁ+n - é(2m7/(5+l))e(iZJT/(S+1))/\7

(4.25)
where the operator®@/S+D)¥ s nothing but thephase shift operator
ei(zn/(s+1>)N|9m> =g, + 2n = |0ps1) (4.26)
S+1

and the parametey and the functionF will be specified later. It is easy to see that
equations (4.25) lead to the following relations,

Alln) = VF(@ ) In+1)  n#S

AT|S) = exp{—i(S + Dbo}y/ F(g"0)

Aln) = v F(q@")n — 1) n#0

A|0) = /F(g") exp{i(S + 1)6o}|S)

gV In) = q"""|n) (4.27)
which are just the representation (4.4) of th6&DO with& = exp{—i(S + 1)6p}. Therefore
the operators defined in (4.25) generatg-@DO.

Now we consider the constraints on the parameter K (S) in the functionF. The
following conditions should be satisfied:
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(i) The functionF must be Hermitian and non-negative due to the same properties of
the operatordfA.

(i) »n should be chosen such that the representation (4.27) is a cyclic representation.

(iii) In the classical limitS — oo (¢ — 1) or zero deformation, the operatafs, A
should tend to the creation and annihilation operators of the ordinary oscillator.

The condition for the cyclic representation is equivalent to the condition that the operator
F(¢"V) has the inverse which is necessary in order to define the PB phase operator. For
simplicity and concreteness, let us discuss the positjvescillators’ (4.8) and (4.9). As
mentioned above, the condition for non-vanishing central elements (4.5) can be easily
satisfied for case (4.8) ifi(S) is not an integer. As for the other example (4.9), the
same condition is satisfied for example by

n=0 0< |K(S)| < 3. (4.28)

In either case, the algebra df and AT degenerate to that of the ordinary oscillator (Weyl
algebra) provided

Slim nS)=0 or Slim K(S)=0. (4.29)

These can be achieved; for exampjé$) = K(S) = 1/(S + 1).

We would like to remark that Ellinas [25] studied the phase operator fronmetielar
representation of the naive-oscillator with ¢St = 1. As remarked in the previous
subsection, the naivg-oscillator (4.7) withg root of unity does not possess an admissible
algebraic structure to connect with the Hermitian phase operator. Moreover, in the regular
representation characterized by the conditio@) = Af|S) = 0, both of the operatord
and A' have a zero mode. Therefore, the polar decomposition for them does not exist and
the Hermiticity of the phase operator, if any, is not guaranteed.

4.3. Algebraic definition of the Hermitian phase operator

Now we turn to the study of the Hermitian phase operator from the viewpoint of the cyclic
representations of theGDO. For concreteness, we consider the positivescillator’ (4.8)
only. For other choices af such as (4.9) the discussion is essentially the same. We start
with the cyclic representation (4.4) of a positive-oscillator’ on the spacé&is with the
inner product(m|n) = 8,,,. Define the exponential phase operatdfs and e® by the

relation (4.25). Since we have chosgrsuch that/[[n + k]| # 0 (k € {0,1,...,8}) in
the cyclic representation (4.25), the operAaIG{WH (4.4) has the inverse. Therefore in the
cyclic representation (4.4) the operators®e are well defined uniquely:

¥ = (IIV+1lEa e = (V] Al (4.30)
Inserting (4.30) into (4.4), we find the action of'® on H:

k) =k-1)  k£0 ™0y =£7Ys)

ek =k+1)  k#S e =¢/0)

gV1k) = ¢“k). (4.31)

Choosingg = e %+D we exactly reproduce the PB exponential phase operator (4.27).
It is not convenient to derive the action of phase operatgritself on the number

states. To evaluate the phase operdigiitself, we have to look for a basis on whicite
is diagonal. To this end we evaluate the eigenstate$®of e

ei&’“lz) =z|z). (4.32)
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Suppose thafy) = Zfzo C,|n), whereC, is a coefficient to be determined. Then inserting
it into equations (4.32) we obtaifi + 1 distinct eigenvalues,

o
Zm = EXP(i60) exp(ﬂ) =expif,) m=0,1,....5 (4.33)

whereg,, is the same as in equation (4.16). Then the corresponding eigenstates are

S
10m) = |2m) = Co ) eXpi6,n)|n) (4.34)
n=0

and their inner product
(Om16n) = |Col*(S + Dy (4.35)

Requiring that the statelg,,) are normalized, the constany is fixed as ¥+/S+ 1. In
comparison with the PB theory, these eigenstates form the phase states. On the phase states
the eigenvalue equation (4.32) becomes

€% 16,,) = exp(i6,,)16,) (4.36)
from which we candefinethe Hermitian phase operatdr, as follows:
P[0} = O |6). (4.37)

So, this approach exactly recovers the PB theory. It should be noted, however, that all the
eigenvalues could be shifted by an integer multiple »f &hich is natural for a phase. In
other words it can be absorbed by the redefinitiomgf

5. Conclusion

In this paper we have studied the GDO and some of its properties, namely, the multiphoton
realizations, the ladder-operator coherent and squeezed vacuum states. The coherent
displacement operataP(«) and the squeeze operaté(z) are explicitly constructed and
expressed in the exponential form. For the ordinary oscillator, we know that the state
D(a)S$(2)[0)

o, 2) = D(@)S(2)|0) = Coe' g |0)—1Lmalzaton _ cpal—a’a gra'®~z"a? ) (5.1)

is just the squeezed state, which is also the eigenstate ¢fva’. However, for the general
case (the GDO), the state(«)S(z)||0) is not the squeezed state equivalent to the ladder-
operator definition, namely, it is not the eigenstatg.df+vAf. The coherent displacement
operatorD(«) is agood operator in the sense that it enjoys the following property:

D(—a)AD(x) = A + «. (5.2)
However, the squeeze operaffiz) does not keep the Bogoliubov transformation, namely,
S7Hz)AS(z) # uA 4+ vAT. (5.3)

This is why the stateD(x)S(z)|0) is not the eigenstate giA + vAf, as is argued in

[30]. However, we can expect that the staf@gr)S(z)||0) and S(z) D(«)||0) are important
guantum states in quantum optics and it is a good challenge to study their non-classical
properties.

We have pointed out that a realistic physical system, the ISOS (isospectral oscillator
system), has a GDO as its symmetry algebra. Its coherent and squeezed vacuum states
are studied in some detail and they are compared and related with those of the ordinary
oscillator.
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To connect the GDO with the Hermitian phase operator, we have introduced a new
algebra, the;-GDO, which is a subalgebra of the GDO depending on a complex parameter
g. It has cyclic representations whernis a root of unity. This approach has two remarkable
advantages: (1) the phase operator of the Pegg—Barnett theory can be constructed from the
g-GDO purely algebraically (2) the g-GDO with g5 = 1 provides a finite-dimensional
space to define the phase operator and the cyclic representations ensure the Hermiticity of
the phase operator in contrast with the regular representation case.
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Appendix A. Multimode GDO

The formalism in section 2.1 can be easily generalized to the multimode case. For
simplicity we consider only the two-mode case. Generalization to three-mode and further is
straightforward. Consider the two-mode photon field described by two independent modes

[a,a']=1 b, b']=1 (A1)
and an arbitrary two-mode multiphoton annihilation oscillator
A= f(N]_, Nz)a”‘b” (A2)

where N; = ata, No = b'b, f is an arbitrary function withf (n1, n») # 0 for n1, n» non-
negative integers. Note that is not necessarily factorized g N1, No) = f1(N1) f2(N2).
It is easy to seéi =1, 2)

AAT=FN1+ 1, N2+ 1) ATA = F(N1, \Y)
where
N15%(N1—i) NZE%(Nl_j) 0O<i<m-10<,<n-1
FN1+1LNo+1D)=((N1+1D)---(Np+m)(N2+ 1) - (N2 +n) f (N1, N2) f*(N1, N2)
=mN+i+1D--(mN+i+m)nNo+j+1)---
x(nN2 + j +n) f(N1, No) (N1, N2). (A.4)
This algebra is defined in a subspakg of the sectors;; spanned by{=0,1,2,...)

1 . .
k) =7W(A) li, j) o lkm + i, kn + j). (A.5)

The representation of}; is
Alk) = VF(k, k)|Ik + 1) Allk) =V F(k, k) |lk — 1) Nillk) = Nallk) = k|k).
(A.6)
We consider the eigenvalue equation
(wA +vAD)IB) = BIB). (A7)



Generally deformed oscillator 4063

These states are degenerate. The degeneracy can be lifted by assuming that-thg
photons are either created or annihilated together. This means we have the following
conservation law:

N1 —MN2)|B) =0. (A.8)

In representation (A.6) the condition is fulfilled automatically.

Identifying F(k, k) here with F (k) in section 2, representation (A.6) takes the same
form as (2.15). So, formally, the squeezed states can be investigated in the same manner
as those in section 2.2.
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